La Naturaleza de la Luz – Parte I

cristinaarcephotography_education_learning_photography

La Naturaleza de la Luz – Parte I

Qué es la luz?

Los sabios de todas las épocas han tratado de responder a esta pregunta. Los griegos suponían que la luz emanaba de los objetos, y era algo así como un “espectro” de los mismos, extraordinariamente sutil, que al llegar al ojo del observador le permitía verlo.

De esta manera los griegos y los egipcios se abocaron a la solución de estos problemas sin encontrar respuestas adecuadas. Posteriormente en la Europa del S. XV al XVII, con los avances realizados por la ciencia y la técnica, surgieron muchos matemáticos y filósofos que produjeron importantes trabajos sobre la luz y los fenómenos luminosos.

Es Newton el que formula la primera hipótesis seria sobre la naturaleza de la luz.

TEORIA DE NEWTON

Se la conoce como teoría corpuscular o de la emisión. Según Newton, las fuentes luminosas emiten corpúsculos muy livianos que se desplazan a gran velocidad y en línea recta. Podemos fijar ya la idea de que esta teoría además de concebir la propagación de la luz por medio de corpúsculos, también sienta el principio de que los rayos se desplazan en forma rectilínea.

Como toda teoría física es válida en tanto y en cuanto pueda explicar los fenómenos conocidos hasta el momento, en forma satisfactoria.

Newton explicó que la variación de intensidad de la fuente luminosa es proporcional a la cantidad de corpúsculos que emite en determinado tiempo.

La reflexión de la luz consiste en la incidencia de dichos corpúsculos en forma oblicua en una superficie espejada, de manera que al llegar a ella varía de dirección pero siempre en el mismo medio.

La igualdad del ángulo de incidencia con el de reflexión se debe a la circunstancia de que tanto antes como después de la reflexión los corpúsculos conservan la misma velocidad (debido a que permanece en el mismo medio).

La refracción la resolvió expresando que los corpúsculos que inciden oblicuamente en una superficie de separación de dos medios de distinta densidad son atraídos por la masa del medio más denso y, por lo tanto, aumenta la componente de la velocidad que es la velocidad que es perpendicular a la superficie de separación, razón por la cual los corpúsculos luminosos se acercan a la normal.

Según lo expresado por Newton, la velocidad de la luz aumentaría en los medios de mayor densidad, lo cual contradice los resultados de los experimentos realizados años después.

Esta explicación, contradictoria con los resultados experimentales sobre la velocidad de la luz en medios más densos que el vacío, obligó al abandono de la teoría corpuscular.

cristinaarce_modelo_corpuscular_luz

Modelo Corpuscular de la Luz

cristinaarce_teoria_corpuscular_newton_luz_sombras

Teoria Corpuscular de Newton

TEORIA DE HUYGENS

Allá por 1690, cuando todavía se admitía la teoría corpuscular de la propagación de la luz, un físico, matemático y astrónomo holandés llamado Christian Huygens expuso su teoría sobre este fenómeno.

Huygens emitió la hipótesis de que la luz era un fenómeno ondulatorio, de naturaleza semejante a la del sonido.

Según esta teoría, la velocidad de la luz disminuye al penetrar en el agua, que es lo contrario de lo que se deduce de la teoría corpuscular.

La única diferencia entre la luz y las ondas sonoras es que el sonido no se propaga en el vacío mientras que la luz sí lo hace.

Para explicar esta trayectoria de la luz en el vacío, Huygens completó su teoría agregando que el rayo luminoso se propagaría entonces por la vibración de cada uno de los puntos que son alcanzados por la luz, aún aquellos del “éter cósmico” que se encuentra en el vacío.

Principio de Huygens: “Cada punto alcanzado por la onda luminosa actúa como centro emisor de ondas secundarias. Y la onda principal es la envolvente de todas esas ondas secundarias.”

cristinaarce_teoria_huygens_ondas_luz

Teoria Ondulatoria de la Luz de Huygens

LOS TRABAJOS DE MAXWELL

Este físico escocés, dedicado al estudio del electromagnetismo, demostró que un circuito eléctrico oscilante radiaba ondas electromagnéticas. Resultó ser que estas ondas eran prácticamente iguales en velocidad a la de la luz. Ante esta comprobación Maxwell expresó su idea de que la luz podría ser de naturaleza electromagnética.

Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético.

cristinaarce_ondas_electromagneticas_luz_maxwell

Ondas Electromagneticas – James Clerk Maxwell

TEORIA CUANTICA DE PLANCK

Max Karl Ernest Ludwig Planck (Kiel, Alemania, 23 de abril de 1858 – Gotinga, Alemania, 4 de octubre de 1947) fue un físico alemán considerado como el fundador de la teoría cuántica y galardonado con el Premio Nobel de Física en 1918.

Max Planck estudia la energía radiante y llegó a comprobar que las variaciones de temperatura se hacen por “saltos”, como por granitos de energía, a los que llamó “cuantos”.

En 1905 Einstein llegó a comprobar que la energía de un haz luminoso está distribuida en una onda electromagnética y avanza en “paquetes” de electrones que llamó “fotones”.

Si en este momento nos volviésemos a preguntar que es la luz diríamos ahora que es una energía radiante contenida en infinitos “paquetes” de electrones llamados fotones que irradian la luz y, con un resto de energía se desplazan por el espacio.

El punto de vista actual, es aceptar el hecho que la luz parece tener una doble naturaleza. Los fenómenos de propagación de la luz encuentran mejor explicación dentro de la teoría ondulatoria, mientras que la acción mutua entre la luz y la materia, en los procesos de absorción y de emisión, se explican mejor con la teoría corpuscular.

cristinaarce_max_planck_1933

Max Planck

cristinaarce_ley_de_planck

Ley de Planck

PARTE II –>